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Abstract
We study a restricted class of self-avoiding walks (SAWs) which start at
the origin (0, 0), end at (L,L), and are entirely contained in the square
[0, L] × [0, L] on the square lattice Z

2. The number of distinct walks is
known to grow as λL2+o(L2). We estimate λ = 1.744 550 ± 0.000 005 as well
as obtaining strict upper and lower bounds, 1.628 < λ < 1.782. We give
exact results for the number of SAWs of length 2L + 2K for K = 0, 1, 2 and
asymptotic results for K = o(L1/3). We also consider the model in which a
weight or fugacity x is associated with each step of the walk. This gives rise
to a canonical model of a phase transition. For x < 1/µ the average length of
a SAW grows as L, while for x > 1/µ it grows as L2. Here µ is the growth
constant of unconstrained SAWs in Z

2. For x = 1/µ we provide numerical
evidence, but no proof, that the average walk length grows as L4/3. Another
problem we study is that of SAWs, as described above, that pass through the
central vertex of the square. We estimate the proportion of such walks as a
fraction of the total, and find it to be just below 80% of the total number of
SAWs. We also consider Hamiltonian walks under the same restriction. They
are known to grow as τL2+o(L2) on the same L × L lattice. We give precise
estimates for τ as well as upper and lower bounds, and prove that τ < λ.

PACS numbers: 05.50.+q, 05.10.−a, 02.10.Ox

(Some figures in this article are in colour only in the electronic version)

1. Introduction

We consider the problem of self-avoiding walks on the square lattice Z
2. For walks on

an infinite lattice, it is generally accepted [14] that the number of such walks of length n,
equivalent up to a translation, denoted by cn, grows as cn ∼ const µnnγ−1, with metric
properties, such as the mean-square radius of gyration or mean-square end-to-end distance
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growing as 〈R2〉n ∼ const n2ν , where γ = 43/32 and ν = 3/4. The growth constant µ

is lattice dependent, and for the square lattice is not known exactly, but is indistinguishable
numerically from the unique positive root of the equation 13x4 − 7x2 − 581 = 0. We denote
the generating function by C(x) := ∑

n cnx
n. It will be useful to define a second generating

function for those SAWs which start at the origin (0, 0) and end at a given point (u, v), as
G(0,0;u,v)(x). In terms of this generating function, the mass m(x) is defined [14] to be the rate
of decay of G along a coordinate axis,

m(x) := lim
n→∞

−log G(0,0;n,0)(x)

n
. (1)

Here, we are interested in a restricted class of square lattice SAWs which start at the origin
(0, 0), end at (L,L), and are entirely contained in the square [0, L] × [0, L]. A fugacity, or
weight, x is associated with each step of the walk. Historically, this problem seems to have
led two largely independent lives. One as a problem in combinatorics (in which case the
fugacity has been implicitly set to x = 1), and one in the statistical mechanics literature
where the behaviour as a function of fugacity x has been of considerable interest, as there is a
fugacity-dependent phase transition.

The problem seems to have first been seriously studied as a mathematical problem by
Abbott and Hanson [1] in 1978, many of whose results and methods are still powerful today. A
key question considered both then and now, is the number of distinct SAWs on the constrained
lattice, and their growth as a function of the size of the lattice. Let cn(L) denote the number
of n-step SAWs which start at the origin (0, 0), end at (L,L) and are entirely contained in
the square [0, L] × [0, L]. Further, let CL(x) := ∑

n cn(L)xn. Then CL(1) is the number of
distinct walks from the origin to the diagonally opposite corner of an L × L lattice. In [1],
and independently in [18], it was proved that CL(1)1/L2 → λ. The value of λ is not known,
though bounds and estimates have been given in [1, 18]. One of our purposes in this paper is
to improve on both the bounds and the estimate.

Like so many problems in lattice statistics, this one owes a debt to J M Hammersley. A
closely related problem to the one considered here is discussed in [15], which is in turn devoted
to problems posed by Hammersley. However, the earliest mention of this problem appears to
be by Knuth [12], who calculated the number of SAWs crossing a 10 × 10 square by Monte
Carlo methods, and estimated the number to be (1.6 ± 0.3) × 1024. It is now known, see
table 2 below, that the correct answer is 1.5687 . . . × 1024. A related problem was studied by
Edwards in [7]. He considered a SAW starting at a point denoted the origin with the endpoint
a distance L from the origin, and no other points at distance L or greater. Let g(L) denote the
number of such SAWs. Then Edwards proved that limL→∞ g(L)(1/L2) exists and lies between
2.3 and 5.0. In our notation, Edwards has proved that 1.53 < λ < 2.24. Edwards also proved
that the same limit holds for a SAW from the origin to the boundary of any convex, bounded
subset of Z

2. His numerical work led him to suggest that λ is about 1.77. Our best estimate,
given below, is 1.744 550(5).

The problem of Hamiltonian paths on an L × M rectangular grid, going from (0, 0) to
(L,M) has also been considered previously. Earlier work is described in [4], where Collins
and Krompart also give generating functions for the number of such paths on grids with
M = 1, 2, 3, 4, 5. In [10] Jacobsen and Kondev gave a field-theoretical estimate of the
growth constant for Hamiltonian SAWs on the square lattice, which must fill a square, as
1.472 801 ± 0.000 01.

In the statistical mechanics literature, the problem appears to have been introduced by
Whittington and Guttmann [18] in 1990, who were particularly interested in the phase transition
that takes place as one varies the fugacity associated with the walk length. All walks on lattices
up to 6 × 6 were enumerated, and the estimate λ = 1.756 ± 0.01 was given. At a critical
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value, xc the average walk length of a path on an L × L lattice changes from �(L) to �(L2),
where we define �(x) as follows. Let a(x) and b(x) be two functions of some variable x. We
write that a(x) = �(b(x)) as x → x0 if there exist two positive constants κ1 and κ2 such that,
for x sufficiently close to x0,

κ1b(x) � a(x) � κ2b(x).

In [18] the critical fugacity was proved to be at least 1/µ, its value was estimated numerically
and was conjectured to be xc = 1/µ, and in [13] the conjecture was proved by Madras.

The problem was subsequently taken up by Burkhardt and Guim [2], who extended the
enumerations given in [18] to 9 × 9 lattices, and used their data to give the improved estimate
λ = 1.743±0.005. By considering SAW as the N → 0 limit of the O(N) model of magnetism,
Burkhardt and Guim show that the conjecture xc = 1/µ made in [18] on numerical grounds
follows directly, though this is not a proof, unlike the subsequent result of Madras [13].

They also gave a scaling ansatz for the behaviour of CL(x) for L large in the vicinity of
x = xc. They proposed

CL(x) ∼ L−ηcf [L1/ν(xc − x)] (2)

where ν = 3/4, as described above, and ηc = 5/2 is the corner exponent of the magnetization
[3], given by Cardy’s [3] result ηc(θ) = π

θ
η‖, for a wedge-angle θ , which is π/2 in this case.

η‖ = 5/4 is the surface exponent that characterizes the decay of spin–spin correlations parallel
to the boundary in the semi-infinite geometry, corresponding to wedge-angle π . Consequences
of this scaling ansatz include the following predictions:

CL(xc) ∼ const L−ηc

〈n(xc, L)〉 = x
∂

∂x
CL(xc) ∼ const L1/ν (3)

〈(n(xc, L) − 〈n(xc, L)〉)2〉 =
(

x
∂

∂x

)2

ln CL(xc) ∼ const L2/ν .

They tested these results from their numerical data, and found them well supported. We
provide even firmer support for these results on the basis of radically extended numerical data.
Equation (3) has also previously been given by Duplantier and Saleur [6].

Burkhardt and Guim also considered a generalization of the problem considered here by
including a second fugacity, associated with steps in the boundary. This allows the problem
of adsorbing boundaries to be studied. We will not discuss this aspect of the problem further,
except to note that in [2] a full scaling theory is developed, and the predictions of the theory
are tested against numerical data.

In [1] the slightly more general problem of SAW constrained to an L × M lattice was
considered, where the analogous question was asked: How many non-self-intersecting paths
are there from (0, 0) to (L,M)? If one denotes the number of such paths by CL,M , it is clear
that, for M finite, the paths can be generated by a finite-dimensional transfer matrix, and hence
that the generating function is rational [17]. Indeed, in [1] it was proved that

G2(z) =
∑
L�0

CL,2z
L = 1 − z2

1 − 4z + 3z2 − 2z3 − z4
, (4)

(where here we have corrected a typographical error). It follows that CL,2 ∼ const λ2L
2 , where

λ2 =
√

2√
13−3

= 1.817 35 . . . .

In this paper, we also consider two further problems which can be seen as generalizations
of the stated problem. Firstly, we consider the problem where SAWs are allowed to start
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Figure 1. An example of a SAW configuration crossing a square (the left panel), traversing a
square from left to right (the middle panel) and a cow-patch (the right panel).

anywhere on the left edge of the square and terminate anywhere on the right edge; so these are
walks traversing the square from left to right. We call such walks transverse walks. Secondly,
we consider the problem in which there may be several independent SAWs, each SAW starting
and ending on the perimeter of the square. The SAWs are not allowed to take steps along the
edges of the perimeter. Such walks partition the square into distinct regions and by colouring
the regions alternately black and white we get a cow-patch pattern. Each problem is illustrated
in figure 1.

Following the work in [18], Madras [13] proved a number of theorems. In fact, most of
Madras’s results were proved for the more general d-dimensional hyper-cubic lattice, but here
we will quote them in the more restricted two-dimensional setting.

Theorem 1. The following limits,

µ1(x) := lim
L→∞

CL(x)1/L and µ2(x) := lim
L→∞

CL(x)1/L2
,

are well defined in R ∪ {+∞}.
More precisely,

(i) µ1(x) is finite for 0 < x � 1/µ, and is infinite for x > 1/µ. Moreover, 0 < µ1(x) < 1
for 0 < x < 1/µ and µ1(1/µ) = 1.

(ii) µ2(x) is finite for all x > 0. Moreover, µ2(x) = 1 for 0 < x � 1/µ and µ2(x) > 1 for
x > 1/µ.

In [18] the existence of the limit µ2(x) was proved, and in addition upper and lower
bounds on µ2(x) were established.

The average length of a (weighted) walk is defined to be

〈n(x, L)〉 :=
∑

n

ncn(L)xn
/ ∑

n

cn(L)xn. (5)

Theorem 2. For 0 < x < 1/µ, we have that 〈n(x, L)〉 = �(L) as L → ∞, while for
x > 1/µ, we have 〈n(x, L)〉 = �(L2).

In [18] it was proved that 〈n(1, L)〉 = �(L2). The situation at x = 1/µ is unknown. We
provide compelling numerical evidence that in fact 〈n(1/µ,L)〉 = �(L1/ν), where ν = 3/4,
in accordance with an intuitive suggestion in both [2] and [13].

Theorem 3. For x > 0, define f1(x) = log µ1(x) and f2(x) = log µ2(x).
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(i) The function f1 is a strictly increasing, negative-valued convex function of log x for
0 < x < 1/µ, and f1(x) = �(−m(x)) as x → 1/µ−, where m(x) is the mass, defined
by (1).

(ii) The function f2 is a strictly increasing, convex function of log x for x > 1/µ, and satisfies
0 < f2(x) � log µ + log x.

Some, but not all of the above results were previously proved in [18], but these three
theorems elegantly capture all that is rigorously known.

The rest of the paper is organized as follows: In the next section we describe our
enumeration methods, and explain how they are used to obtain radically extended series
expansions for the number of walks crossing a square, the number of cow-patch configurations
and the number of transverse SAWs. Section 3 details the results we have obtained. In
section 4 we derive methods for obtaining rigorous upper and lower bounds on λ. In that
section, we show that upper bounds based on counting cow-patch configurations are fully
equivalent to the method of Abbott and Hanson, based on 0–1 admissible matrices. An
improved method of lower bounds based on counting transverse walks is also derived. In
section 5 we then apply these methods to our radically extended enumerations to provide
significantly improved bounds on λ. In section 6 we give exact results for a short SAW
crossing a square. The shortest SAW that can cross a square from (0, 0) to (L,L) is of
length 2L. We give the exact number of such SAWs of length 2L + 2K , for K = 0, 1, 2, and
asymptotic results for K = o(L1/3). Section 7 is devoted to a numerical analysis which gives
precise (though non-rigorous) estimates of λ, for all three types of configurations, a discussion
of the mean number of steps as a function of fugacity, fluctuations in this quantity, and a scaling
theory for such fluctuations. We also speculate on the nature of the sub-dominant behaviour
of the asymptotic form for the number of SAWs. Section 8 is also a numerical study, but of the
number of SAWs that pass through the central vertex of an L × L square. Finally in section 9
we study Hamiltonian paths, obtaining both rigorous upper and lower bounds on the growth
constant, and a numerical estimate.

2. Exact enumeration

In the following, we give a fairly detailed description of the algorithm we use to enumerate
the number of walks crossing a square and briefly outline how this basic algorithm is modified
in order to include a step fugacity, study SAWs traversing a square and the cow-patch
configurations.

2.1. The basic algorithm

We use a transfer matrix algorithm to count the number of walks crossing L × M rectangles.
The algorithm is based on the method of Conway et al [5] for enumerating ordinary self-
avoiding walks. The transfer matrix technique involves drawing a boundary line through the
rectangle intersecting M + 1 or M + 2 edges.

For each configuration of occupied or empty edges we maintain a count of partially
completed walks intersecting the boundary in that pattern. Walks in rectangles are counted
by moving the boundary adding one vertex at a time (see figure 2). Rectangles are built up
column-by-column with each column constructed one vertex at a time. Configurations are
represented by lists of states {σi}, where the value of the state σi at position i must indicate if
the edge is occupied or empty. An empty edge is indicated by σi = 0. An occupied edge is
either free (not connected to other edges) or connected to exactly one other edge via a path to
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Figure 2. The left panel shows a snapshot of the intersection (the dashed line) during the transfer
matrix calculation. Walks are enumerated by successive moves of the kink in the boundary, as
exemplified by the position given by the dotted line, so that the L × M rectangle is built up one
vertex at a time. To the left of the boundary we have drawn an example of a partially completed
walk. Numbers along the boundary indicate the encoding of this particular configuration. The
right panel shows some of the local configurations which occur as the kink in the intersection is
moved one step.

Table 1. The various ‘input’ states and the ‘output’ states which arise as the boundary line is
moved in order to include one more vertex. Each panel contains up to three possible ‘output’ states
or other allowed actions.

Top 0 1 2 3
Bottom
0 00 23 01 10 Res 02 20 03 30
1 01 10 Res 0̂0 0̂0
2 02 20 0̂0 00
3 03 30 0̂0 00 00

the left of the boundary. We indicate this by σi = 1 for a free end, σi = 2 for the lower end
of a loop and σi = 3 for the upper end of a loop connecting two edges. Since we are studying
self-avoiding walks on a two-dimensional lattice the compact encoding given above uniquely
specifies which ends are paired. Read from the bottom the configuration along the intersection
in figure 2 is {2203301203} (prior to the move) and {2300001203} (after the move).

There are major restrictions on the possible configurations and their updating rules. Firstly,
since the walk has to cross the rectangle there is exactly one free end in any configuration.
Secondly, all remaining occupied edges are connected by a path to the left of the intersection
and we cannot close a loop. It is therefore clear that the total number of 2s equals the total
number of 3s. Furthermore, as we look through the configuration from the bottom the number
of 2s is never smaller than the number of 3s (they are perfectly balanced parentheses). We
also have to ensure that the graphs we construct have only one connected component. In the
following, we shall briefly show how this is achieved.

We call the configuration before and after the move the ‘source’ and ‘target’, respectively.
Initially, we have just one configuration with a single ‘1’ at position 0 (all other entries ‘0’)
thus ensuring that we start in the bottom-left corner. As the boundary line is moved one step,
we run through all the existing sources. Each source gives rise to one or two targets and the
count of the source is added to the count of the target (the initial count of a target being zero).
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After a source has been processed it can be discarded since it will make no further contribution.
Table 1 lists the possible local ‘input’ states and the ‘output’ states which arise as the kink in
the boundary is propagated one step and the various symbols will be explained below.

Firstly, the values of the ‘Bottom’ and ‘Top’ table entries refer to the edge states of the
kink prior to the move. The Top (Bottom) entry is the state of the edge intersected by the
horizontal (lower vertical) part of the boundary.

Some of the updating rules are illustrated further in figure 2. The top-most panels represent
the input state ‘00’ having the allowed output states ‘00’ and ‘23’ corresponding to leaving
the edges empty or inserting a new loop, respectively. The middle panels represent the input
state ‘20’ with output states ‘20’ and ‘02’ from the two ways of continuing the loop end (note
that the loop has to be continued since we would otherwise generate an additional free end not
located at the allowed positions in the corners). The bottom-most panels represent the input
state ‘22’ as part of the configuration {02233}. In this case, we connect two loop ends and we
thus join two separate loops into a single larger loop. The matching upper end of the innermost
loop becomes the new lower end of the joined loop. The relabelling of the matching loop end
when connecting two 2s (or two 3s) is denoted by overlining in table 1. When we join loop
ends to a free end (inputs ‘12’, ‘21’, ‘13’ and ‘31’) we have to relabel the matching loop end
as a free end. This type of relabelling is indicated by the symbol 0̂0. The input state ‘11’ never
occurs since there is only one free end. The input state ‘23’ is not allowed since connecting the
two ends results in a closed loop and we thus discard any configuration in which a closed loop
is formed. It is quite easy to avoid forming closed loops. We only have to be careful when the
input is ‘03’ or ‘30’. If the upper end of the loop is continued along the vertical output edge
we would form a closed loop if the horizontal edge immediately below was a lower loop end,
and we just check the state of this edge and only proceed if it is not in state ‘2’ (naturally the
upper loop end can always be continued along the horizontal output edge).

Finally, we have marked two outputs, from the inputs ‘01’ and ‘10’ with ‘Res’, indicating
situations where we terminate free ends. This results in completed partial walks and is only
allowed if there are no other occupied edges in the source (otherwise we would produce graphs
with separate pieces) and if we are at the top-most vertex (otherwise we would not cross the
rectangle). The count for this configuration is the number of walks crossing a rectangle of
height M and length L equal to the number of completed columns.

The time required to obtain the number of walks on L×M rectangles grows exponentially
with M and linearly with L. Time and memory requirements are basically proportional to the
maximal number of distinct configurations along the boundary line. When there is no kink in
the intersection (a column has just been completed) we can calculate this number, Nconf(M),
exactly. Obviously, the free end cuts the boundary line configuration into two separate pieces.
Each of these pieces consists of 0s and an equal number of 2s and 3s with the latter forming a
perfectly balanced parenthesis system.

Each piece thus corresponds to a Motzkin path [17, chapter 6] (just map 0 to a horizontal
step, 2 to a north-east step, and 3 to a south-east step). The number of Motzkin paths Mn

with n steps is easily derived from the generating function M(x) = ∑
n Mnx

n, which satisfies
M = 1 + xM + x2M2, so that

M(x) = [
1 − x −

√
(1 + x)(1 − 3x)

]/
2x2. (6)

The number of configurations Nconf(M) for a rectangle of height M is simply obtained
by inserting a free end between two Motzkin paths, so that the generating function∑

M Nconf(M)xM is simply xM(x)2. The Lagrange inversion formula gives

Nconf(M) = 2
∑
i�0

(M + 1)!

i!(i + 2)!(M − 2i)!
.
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When the boundary line has a kink the number of configurations exceeds Nconf(M) but clearly
is less than Nconf(M + 1). From (6) we see that asymptotically Nconf(M) grows like 3M (up to
a power of M). So the same is true for the maximal number of boundary line configurations
and hence for the computational complexity of the algorithm. Note that the total number of
walks grows like λLM , so our algorithm leads to a better than exponential improvement over
direct enumeration.

The integers occurring in the expansion become very large so the calculation was
performed using modular arithmetic [11]. This involves performing the calculation modulo
various prime numbers pi and then reconstructing the full integer coefficients at the end. We
used primes of the form pi = 230 − ri where ri are distinct integers, less than 1000, such that
pi is a (different) prime for each value of i. The Chinese remainder theorem ensures that any
integer has a unique representation in terms of residues. If the largest integer occurring in the
final expansion is m, then we have to use a number of primes k such that p1p2 · · · pk > m.

2.2. Extensions of the algorithm

The algorithm is easily generalized to include a step fugacity x. The count associated with
the boundary line configuration has to be replaced by a generating function for partial walks.
Since we only use this generalization to study walks crossing an L × L square the generating
function is just a polynomial of degree (at most) L(L + 2) in x. The coefficient of xn is just
the number of partial walks of length n intersecting the boundary line in the pattern specified
by the configuration. The generating function of the source is multiplied by xm and added to
the target, where m is the number of additional steps inserted. Not all L(L + 2) terms in the
polynomials need be retained. Firstly, any walk crossing the square has even length. Thus in
the generating functions for partial walks either all the even or all the odd terms are zero, and
we need only retain the non-zero terms. Secondly, in order to construct a given boundary line
configuration, a certain minimal number of steps nmin are required. Terms in the generating
function of degree lower than nmin are therefore zero and again we need not store these.

The generalization to traversing walks is also quite simple. Firstly, we have M + 1 initial
configurations which are empty except for a free end at position 0 � j � M . This corresponds
to the M + 1 possible starting positions for the walk on the left boundary. Secondly, we have
to change how we produce the final counts. The easiest way to ensure that a walk spans the
rectangle and that only single component graphs are counted is as follows: when column L+1
has been completed we look at the M + 1 configurations with a single free end and add the
counts from all of them. This is the number of walks traversing an L × M rectangle.

The generalization to cow-patch patterns is more complicated. Graphs can now have
many separate components each of which is a SAW, and there can thus be many free ends
in a boundary line configuration. Note that each SAW starts and terminates with a step
perpendicular to the border of the rectangle and there are never any steps along the edges of
the borders of the rectangle. There are 2M−1 initial configurations since any of the edges in the
first column from position 1 to M − 1 can be occupied by a free end or be empty (recall that
in cow-patch configurations the top- and bottom-most horizontal edges cannot be occupied).
There is an extra updating rule in the bulk in that we can have the local input ‘11’ (joining of
two free ends) with the only possible output being ‘00’. Also the updating rules at the upper
and lower borders of the rectangle are different in this case. At the upper border we only have
the input ‘00’ with the outputs ‘00’ and ‘10’ corresponding to the insertion of a free end on a
vertical edge at the upper border. There are no ‘23’ or ‘01’ outputs since these would produce
an occupied edge along the upper border. At the lower border we have inputs ‘00’, ‘01’ and
‘02’ and in each case the only possible output is ‘00’ (with the appropriate relabelling in the
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‘02’ case). Finally, the count of the number of cow-patch patterns is obtained by summing
over all boundary line configurations after the completion of a column.

3. Results

As discussed above, in order to obtain the exact value of the number of SAWs crossing a
square, some of which are integers with nearly 100 digits, we performed the enumerations
several times, each time modulo a different prime. The enumerations were then reconstructed
using the Chinese remainder theorem. Each run for a 19 × 19 lattice took about 72 h using
eight processors of a multiprocessor 1 GHz Compaq Alpha computer. Ten such runs were
needed to uniquely specify the resultant numbers.

Proceeding as above, we have calculated cn(L) for all n for L � 17. In other words, we
have obtained the polynomials CL(x) for L � 17. In addition, we have computed C18(1) and
C19(1), the total number of SAWs crossing an 18 × 18 and 19 × 19 square, respectively. We
have also computed the corresponding quantities for cow-patch and transverse SAWs, denoted
as PL(1) and TL(1) respectively, for L � 19. These are given in table 2.

In [1] the question was asked whether C
1

LM

L,M is decreasing in both L and M. We can answer
this in the negative, based on our enumerations.

4. Proofs of bounds

Let C(L) be the set of self-avoiding walks crossing the L×L square from its south-west corner
(0, 0) to its north-east corner (L,L). Let C(L) denote the cardinality of C(L). Let T (L) be
the set of self-avoiding walks that traverse, the L × L square: by this, we mean that the walk
starts from the west edge of the square and ends on the east edge (figure 1). Let T (L) be the
cardinality of T (L). Finally, let P(L) be the set of cow-patches, of size L: a cow-patch is a
configuration of mutually avoiding self-avoiding walks on the L × L square, such that each
walk has both endpoints on the border of the square, but never contains an edge of the border
(figure 1). Let P(L) be the number of cow-patches of size L.

We first prove in this section that

lim C(L)1/L2 = lim T (L)1/L2 = lim P(L)1/L2 = λ. (7)

Then, we prove the following bounds on λ: for L � 1,

C(L)1/(L+1)2 � λ, T (L)1/((L+1)(L+2)) � λ, λ � (2P(L))1/L2
.

Let us first focus on (7). As recalled in the previous sections, the convergence of C(L)1/L2

to λ has been proved in earlier papers [1, 18]. For walks of T (L), a similar result follows from
the fact that

C(L) � T (L) � C(L + 2).

The first inequality above is obvious. The second one is explained on the left of figure 3.
For cow-patches, the existence and value of lim P(L)1/L2

follow from

C(L − 1) � P(L) � C(L + 3).

The first inequality is explained on the right of figure 3. The second one is a bit more tricky.
We borrow the following argument from [7]. It is illustrated in figure 4. Start from a cow-patch
of size L. Colour all cells of the square in black and white, in such a way that the south-west
corner of the square is black and each step included in one of the walks of the cow-patch is
adjacent to a black cell and a white one. Surround the square by a layer of black cells, so as
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Table 2. The total number of walks crossing a square, CL(1), cow-patch walks, PL(1) and
traversing walks, TL(1).

L CL(1)

1 2

2 12

3 184

4 8 512

5 1 262 816

6 575 780 564

7 789 360 053 252

8 3 266 598 486 981 642

9 41 044 208 702 632 496 804

10 1 568 758 030 464 750 013 214 100

11 182 413 291 514 248 049 241 470 885 236

12 64 528 039 343 270 018 963 357 185 158 482 118

13 69 450 664 761 521 361 664 274 701 548 907 358 996 488

14 227 449 714 676 812 739 631 826 459 327 989 863 387 613 323 440

15 2 266 745 568 862 672 746 374 567 396 713 098 934 866 324 885 408 319 028

16 68 745 445 609 149 931 587 631 563 132 489 232 824 587 945 968 099 457 285 419 306

17 6 344 814 611 237 963 971 310 297 540 795 524 400 449 443 986 866 480 693 646 369 387 855 336

18 1 782 112 840 842 065 129 893 384 946 652 325 275 167 838 065 704 767 655 931 452 474 605 826 692 782 532

19 1 523 344 971 704 879 993 080 742 810 319 229 690 899 454 255 323 294 555 776 029 866 737 355 060 592 877 569 255 844

L 1
2 PL(1)

1 1

2 7

3 160

4 11 408

5 2 522 191

6 1 718 769 373

7 3 598 611 604 598

8 23 098 353 998 190 640

9 453 839 082 673 896 579 243

10 27 266 319 759 961 440 667 165 921

11 5 005 013 940 387 988 257 218 110 301 496

12 2 805 250 606 288 167 736 619 664 411 164 848 668

13 4 798 636 658 841 347 169 993 094 278 185 741 344 065 154

14 25 042 563 713 780 942 969 666 110 695 844 976 426 050 692 260 400

15 398 585 071 868 378 544 875 200 967 972 920 693 215 965 420 927 547 891 443

16 19 343 509 060 397 504 009 184 634 223 201 418 820 841 655 935 064 055 180 184 148 711

17 2 861 743 739 297 615 012 905 209 591 294 651 941 414 000 218 185 488 280 077 237 678 797 763 881

18 1 290 420 684 731 131 093 964 422 300 362 403 673 911 432 011 198 730 662 653 676 329 480 448 243 238 167 005

19 1 773 260 101 104 126 884 305 729 846 781 529 391 070 539 884 533 101 171 392 023 893 295 633 931 250 883 380 602 647 575

L TL(1)

1 8

2 95

3 2 320

4 154 259

5 30 549 774

6 17 777 600 753

7 30 283 708 455 564

8 152 480 475 641 255 213

9 2 287 842 813 828 061 810 244
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Table 2. (Continued.)

L TL(1)

10 102 744 826 737 618 542 833 764 649

11 13 848 270 995 235 582 268 846 758 977 770

12 5 613 766 870 113 075 134 552 249 300 590 982 081

13 6 856 324 633 418 315 229 580 098 999 727 214 234 534 626

14 25 264 653 780 547 704 599 613 926 971 040 640 439 380 254 497 299

15 281 194 924 965 510 769 640 501 069 703 642 937 039 678 809 002 355 743 600

16 9 461 739 046 646 537 749 639 494 171 503 923 182 753 987 897 972 167 546 351 180 871

17 963 236 702 020 101 408 274 810 653 629 921 860 636 656 580 683 490 560 257 709 270 360 444 788

18 296 872 411 379 358 777 499 142 156 584 947 972 393 781 613 934 413 706 389 772 635 139 720 532 797 697 401

19 277 150 300 263 332 125 727 926 989 254 635 730 407 844 207 233 646 123 561 354 535 935 393 720 183 262 709 640 734 296

L L–1

Figure 3. From transverse walks to walks crossing a square (left). From walks crossing a square
to cow-patches (right).

to obtain a square of size L + 2, containing a certain number of white regions. For each white
region, dig a tunnel (exactly one tunnel) in the outer layer to connect it to the outer world.
In the figure thus obtained, the border of the black region forms a self-avoiding polygon, that
includes each walk of the cow-patch. It remains to extend this polygon in a canonical way to
obtain a walk of C(L + 3), illustrated in the last panel of figure 4.

Let us now discuss lower and upper bounds on λ. The left-hand side of figure 5 shows
that for all � and all odd k, it is possible to combine k2 elements of C(�) to form an element of
C(L) with L = k(� + 1). In figure 5, k = 3. This shows that

C(�)k
2 � C(L).

Hence

C(�)1/(�+1)2 � C(L)1/L2
.

Taking the limit as k → ∞ implies that for all �,

C(�)1/(�+1)2 � λ.

Similarly, let us try to pack transverse walks densely. The right-hand side of figure 5 shows
that for all � and k, it is possible to combine k2(� + 1)(� + 2) elements of T (�) to form an
element of C(L) with L = k(� + 1)(� + 2). This shows that

T (�)k
2(�+1)(�+2) � C(L).

Hence

T (�)1/((�+1)(�+2)) � C(L)1/L2
.
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L L

LL

L

Figure 4. From cow-patches to walks crossing a square.

k(� + 1) blocks

k(� + 2)

blocks

��

L

Figure 5. Dense packings of walks crossing or traversing a square.

Taking the limit as k → ∞ implies that for all �,

λ � T (�)1/((�+1)(�+2)). (8)

Let us finally give upper bounds for λ. Define a coloured cow-patch as a cow-patch in
which the various regions are coloured in black and white, in such a way that two adjacent
regions have different colours. Clearly, each cow-patch gives rise to 2 coloured cow-patches.
Observe that there is a bijection between coloured cow-patches of size L and the admissible,
matrices of the same size, as defined in section 5. Since an element of C(L), with L = k�, can
be seen as the juxtaposition of k2 admissible matrices (or coloured cow-patches) of size �,

C(L) � (2P(�))k
2
.
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Figure 6. A generalized cow-patch.

That is,

C(L)1/L2 � (2P(�))1/�2

and by letting k → ∞, we obtain Abbott and Hanson’s bound: for all �,

λ � (2P(�))1/�2
.

One possible attempt to improve this bound is to consider generalized cow-patches, in which
the walks are allowed to include edges lying on the west and south borders of the square
(figure 6). Let GP(L) denote the number of generalized cow-patches of size L. Since an
element of C(L), with L = k�, can be seen as the juxtaposition of k2 generalized patches, the
above argument gives

λ � GP(�)1/�2
.

We have not exploited this improvement, as it only changes the fourth significant digit of our
bound.

5. Bounds on the growth constant λ

For the more general problem of SAW going from (0, 0) to (L,M) on an L × M lattice, it
was proved in [1] that

Theorem 4. For each fixed M, limL→∞ C
1

LM

L,M = λM exists.

Further, Abbott and Hanson state that a similar proof can be used to establish that

limL→∞ C
1

L2

L,L := λ exists. This was proved rather differently in [18].

5.1. Upper bounds on λ

In [1] an upper bound on the growth constant λ was obtained by recasting the problem in a
matrix setting. We give below an alternative method for establishing upper bounds, based on
defining a superset of paths. We then show that these two methods are in fact identical.

Following [1], consider any non-intersecting path crossing the L × L square. Label each
unit square in the L×L lattice by 1 if it lies to the right of the path, and by 0 if it lies to the left.
This provides a one-to-one correspondence between paths and a subset of L×L matrices with
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elements 0 or 1. Matrices corresponding to allowed paths are called admissible, otherwise
they are inadmissible. Since the total number of L × L 0–1 matrices is 2L2

, we immediately
have the weak bound CL,L � 2L2

. Of the 16 possible 2×2 matrices, only 14 can correspond to
portions of non-intersecting lattice paths. Note that there are only 12 actual paths from (0, 0)

to (2, 2), but a further two matrices may correspond to paths that are embedded in a larger
lattice. Thus we find the bound CL,L � 14(L/2)2

, so λ � 1.9343 . . . Similarly, for 3×3 lattices
we find 320 admissible matrices (out of a possible 512), so λ � 3201/9 = 1.8982 . . . . For
4 × 4 lattices, [1] claims that there are 22 662 admissible matrices, but we believe the correct
number to be 22 816, giving the bound λ � 1.8723 . . . . We have made dramatic extensions
of this work, using a combination of finite-lattice methods and transfer matrices, as described
below, and have determined the number of admissible matrices up to 19 × 19. There are
3.546 5202 . . . × 1090 such matrices, giving the bound

λ � 1.7817.

This bound is fully equivalent to the bound λ � (2PL)1/L2
, where PL denotes the number of

cow-patch configurations on the L × L lattice. This bound was proved in section 4, and the
equivalence follows upon colouring cow-patches by two colours, such that adjacent regions
have different colours. Labelling the two colours 0 and 1 produces a 0–1 matrix representation.

5.2. Lower bounds on λ

In [1] the useful bound

λ > λ
M

M+1
M (9)

is proved.
The above evaluation of λ2, see (4), immediately yields λ > 1.4892 . . . .

Based on exact enumeration, we have found the exact generating functions GM(z) =∑
L CL,MzL for M � 6. For M = 3 we find

G3(z) = [1,−4,−4, 36,−39,−26, 50, 6,−15, 1]

[1,−12, 54,−124, 133, 16,−175, 94, 69,−40,−12, 4, 1]
,

where we denote by [a0, a1, . . . , an] the polynomial a0 + a1z + · · · + anz
n. As explained

above, all the generating functions GM(z) are rational. For M = 4, 5, 6, their numerator and
denominators are found to have degree (26, 27), (71, 75) and (186, 186) respectively, in an
obvious notation.

From these, we find the following values: λ3 = 1.763 31 . . . , λ4 = 1.751 46 . . . ,

λ5 = 1.748 75 . . . and λ6 = 1.747 28 . . . . Then from equation (9) and λ6 we obtain the
bound λ > 1.613 39 . . . .

However, an alternative lower bound can be obtained from transverse SAWs, defined in
section 1. If TL denotes the number of transverse SAWs on the L × L lattice, then we proved
in the previous section that

λ � T (L)1/((L+1)(L+2)). (10)

From our enumerations of T (L), given above for L � 19, we obtain the improved bound
λ > 1.6284.

Combining our results for lower and upper bounds finally gives

1.6284 < λ < 1.7817.
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E2

E1

S 1E

Figure 7. Enumeration of self-avoiding walks with one vertical defect.

6. Short walks crossing a square

As defined in the introduction, let cn(L) be the number of n-step self-avoiding walks crossing
an L × L square. Clearly, this number is zero when n is odd and also when n < 2L. It is
almost as clear that

c2L(L) =
(

2L

L

)
.

Indeed, there are 2L steps in the path, of which L must go north and L must go east. Note that
the number c2L(L) has asymptotic expansion

4L

√
Lπ

(
1 − 1

4L
+

1

128L2
+

5

1024L3
+ · · ·

)
.

Let us now prove that

c2L+2(L) = 2L

(
2L

L − 2

)
.

A walk counted by c2L+2(L) has either L+2 vertical steps (and L horizontal ones), or L vertical
steps (and L + 2 horizontal ones). By symmetry, we can focus on the first case. Let w be such
a walk. We say that w has a vertical defect. Among the L + 2 vertical steps of w, exactly one
goes south, while the L + 1 others go north. The unique south step S is necessarily preceded
and followed by an east step, which we denote respectively by E1 and E2. Let us mark E1

and delete S and E2 (figure 7). The marked path w′ thus obtained allows one to recover the
original path w. It contains L + 1 north steps and L − 1 east steps, one of which is marked.
Moreover, the marked step cannot be at ordinate 0, nor at ordinate L+ 1. Conversely, any walk
w′ satisfying these properties is obtained (exactly once) from a walk counted by c2L+2(L) and
having a vertical defect.

The number of walks having L + 1 north steps and L− 1 east steps is
( 2L

L−1

)
. Marking one

of the east steps gives a factor (L − 1). Now we must subtract the number of walks in which
the marked step is either at level 0 or at level N + 1. Transforming the marked step into a
vertical step shows that each of these two families of marked walks is in bijection with walks
formed with L + 2 up steps and L − 2 down steps. Putting these observations together gives

c2L+2(L) = 2

(
(L − 1)

(
2L

L − 1

)
− 2

(
2L

L − 2

))
= 2L

(
2L

L − 2

)
.

Note that the number c2L+2(L) has the asymptotic expansion

L4L

√
Lπ

(
2 − 33

4L
+

1345

64L2
− 238 35

512L3
+ · · ·

)
.
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E1

S1

E2

E3

S2

E4

N2

E1

S1

E2

N1
W1

S2

S1

E2

E1 S1

E1

E2 S2

E3

Figure 8. Four types of self-avoiding walks with two defects.

The same ideas may be used to find the value of c2L+4(L). We will prove that

1

2
c2L+4(L) = (2L)!

L!(L + 4)!
(48 + 90L + 8L2 − 28L3 − 3L4 + 4L5 + L6) − 2. (11)

First, note that c2L+4(L)/2 is the number of self-avoiding walks (of length 2L + 4, crossing
the L × L square) in which the first defect, that is, the first backward step, is a south step. We
focus on such walks, and study four distinct cases. The first three cases count walks having
two south steps, and the last case count walks having a south step and a west step (figure 8).

(i) The walk w contains two adjacent south steps, S1 and S2. They are necessarily preceded
by an east step E1, and followed by another east step E2. The walk has L + 4 vertical
steps and L horizontal steps. Mark E1, and delete S1, S2, E2 in order to obtain a walk w′

with L + 2 north steps and L − 1 east steps, one of which is marked. In w′, the marked
step cannot be at level 0, 1, L+ 1 or L+ 2. Using the same ingredients as above, we obtain
the number of such walks as

(L − 1)

(
2L + 1

L − 1

)
− 4

(
2L + 1

L − 2

)
.

(ii) The walk contains a sequence E1S1E2S2E3. Again, w has L + 4 vertical steps and L
horizontal steps. Mark E1, and delete S1, E2, S2 and E3 in order to obtain a walk with
L + 2 north steps and L − 2 east steps, one of which is marked. In w′, the marked step
cannot be at level 0, 1, L + 1 or L + 2. The number of such walks is

(L − 2)

(
2L

L − 2

)
− 4

(
2L

L − 3

)
.

(iii) The walk contains a sequence E1S1E2, and, further away, another sequence E3S2E4,
disjoint from the first one. Again, w has L + 4 vertical steps and L horizontal steps. Mark
the steps E1 and E3, delete S1, E2, S2 and E4 in order to obtain a walk with L + 2 north
steps and L−2 east steps, two of which are marked. Note that, in w′, the first marked step
cannot lie at level 0, L + 1 or L + 2, while the second marked step cannot lie at level 0, 1
or L + 2. Using the same ingredients as above, combined with the inclusion–exclusion
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principle, we find the number of such walks as(
L − 2

2

)(
2L

L − 2

)
− 2

[
(L − 3)

(
2L

L − 3

)
−

(
2L

L − 4

)]
− 4

(
2L

L − 4

)
− 2

(
2L

L − 4

)

+ 5

(
2L

L − 4

)
=

(
L − 2

2

)(
2L

L − 2

)
− 2(L − 3)

(
2L

L − 3

)
+

(
2L

L − 4

)
.

(iv) The walk w contains a sequence E1S1E2, and, further away, a sequence N1W1N2 (with
obvious notation). It thus contains L + 2 vertical steps and L + 2 horizontal ones. Mark
the steps E1 and N1, delete S1, E2,W1 and N2 in order to obtain a walk w′ with L north
steps and L east steps, in which one step of each type is marked in such a way that the
east marked step comes before the north marked step. In w′, the two marked steps cannot
be consecutive (or w would not be self-avoiding), the east marked step cannot lie at level
0, and the north marked step cannot lie at abscissa L. Again, the inclusion–exclusion
principle applies and gives the number of such walks as

1

2
L2

(
2L

L

)
− (2L − 1)

(
2L − 2

L − 1

)
− 2L

(
2L

L − 1

)
+ 2

(
2L − 1

L − 1

)
+

[(
2L

L

)
− 1

]
− 1.

Putting together the four partial results we have obtained gives (11). Note that the number
c2L+4(L) has the asymptotic expansion

L24L

√
Lπ

(
2 − 49

4L
+

2913

64L2
− 92971

512L3
+ · · ·

)
.

The above argument suggests that it is very likely that, for every fixed K, the sequence
c2L+2K(L), for L � 0, is polynomially recursive [16, 17, chapter 6].

While it would probably be possible to find the number of possible paths of length 2L+ 6,
the number of special cases that must be treated would become onerous. We have therefore
resorted to a numerical study for walks of length 2L+ 2K,K > 2, based on our enumerations.
For K = 3 we found

L34L

√
Lπ

(
4

3
− 49

6L
+

1931 ± 1

64L2
+ · · ·

)
,

while the corresponding result for K = 4 is

L44L

√
Lπ

(
2

3
+

11

4L
+ · · ·

)
.

We can give a heuristic argument for the general form of the leading term in the asymptotic
expansion of the number of walks of length 2L + 2K which gives as the leading order term

4L√
Lπ

(2L)K

K! . Here the first factor is given by the number of ways of choosing the backbone,(2L

L

) ∼ 4L√
Lπ

and the second is given by the number of ways of placing K defects (or backward

steps) on a path of length 2L, which is just (2L)K . The defects are indistinguishable,
introducing the factor K!.

This argument can be refined into a proof, for K = o(L1/3) by following the steps, mutatis
mutandis in the proof of a similar result given in [8].

7. Numerical analysis

It has been proved [1, 18] that limL→∞ C
1

L2

L,L = λ exists. From this it is likely that
RL = CL+1,L+1/CL,L ∼ λ2L though this has not been proved. Accepting this, the generating
function R(x) = ∑

L RLxL will have the radius of convergence xc = 1/λ2, which we can
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estimate accurately using differential approximants [9]. In this way, we estimate that for the
crossing problem xc = 0.328 58(5), for the transverse problem xc = 0.3282(6) and for the
cow-patch problem xc = 0.328 574(2). It is reassuring to see, from our numerical studies,
that λ appears to be the same for the three problems, as proved above, and we estimate that
λ = 1.744 550(5).

We now speculate on the sub-dominant terms. For SAW on an infinite lattice, it is widely
accepted that cn ∼ const µnng where cn is the number of n-step SAWs equivalent up to a
translation.

It seems at least a plausible speculation that, for a SAW crossing an L × L lattice, the
number going from (0, 0) to (L,L) is given by ∼AλL2+bLLα . We have investigated this
possibility numerically, and found it to be supported by the data, to some extent.

We fitted the data to the assumed form, fixing the value of λ at our best estimate, 1.744 550.
This then leaves two unknown parameters b and α. For cow-patch walks we find b ≈ 0.8558
and α ≈ −0.500. This suggests asymptotic behaviour AP λL2+0.8558L/

√
L, and we estimate

AP ≈ 0.52. For transverse walks and walks crossing a square b is quite small, most likely
zero. A value of b = 0 would imply the absence of a term O(λbL), or possibly the presence of
a term O(log L), or some power of a logarithm. We have investigated the latter possibility by
including a logarithmic factor, and found that the data do not support the presence of such a
term for either class of walk. Of course, we cannot rule out some small power of a logarithm,
but this seems less likely than the absence of a term O(λbL).

We next investigated the possibility that the sub-dominant term is O(Lα). A simple ratio
analysis [9] then led to the estimates α = −0.7 for walks crossing a square, and α = 1.0 for
transverse walks. If our assumed form is correct, we expect these estimates to be accurate to
within 10–15%. We also studied the sequence whose terms are given by the quotient TL/CL.
This has the advantage that the λ dependence cancels, and so our result is independent of any
uncertainty in the value of λ. We find that TL/CL ∼ const L1.7 This is in agreement with
the estimates of α found separately, for the two series. Thus we very tentatively speculate
that CL ∼ 8λL2

/L0.7 and TL ∼ 9λL2
L, where the amplitude estimates follow by the simple

expedient of fitting the assumed L-dependent form to the data, term-by-term, and extrapolating
the resulting sequence of amplitude estimates. Given the sensitivity of the amplitudes to both
λ and α, we do not feel confident quoting an uncertainty for the amplitudes.

Whittington and Guttmann [18] and later Burkhardt and Guim [2] studied the behaviour
of the mean number of steps in a path on an L × L lattice

〈n(x, L)〉 =
∑

n ncn(L)xn∑
n cn(L)xn

(12)

as well as the fluctuations of this quantity

V (x, L) =
∑

n n2cn(L)xn∑
n cn(L)xn

− 〈n(x, L)〉2 (13)

which is a kind of heat capacity. As discussed above, a phase transition takes place as one
varies the fugacity x associated with the walk length. At a critical value xc, the average walk
length of a path on an L×L lattice changes from �(L) to �(L2). In [18] the critical fugacity
was proved to satisfy 1/µ � xc � µH , where µH is the growth constant for a Hamiltonian
SAW on the square lattice, and on the basis of numerical studies conjectured to be xc = 1/µ

exactly. In [13] the conjecture was proved. Here we also study the behaviour at x = xc

and find that 〈n(x, L)〉 = �(L1/ν) where the numerical evidence is consistent with ν = 3/4.
Similar conclusions were reached earlier in [2]. For any given value of L the fluctuation
V (x, L) is observed to have a single maximum located at xc(L) (see the top-left panel of
figure 9). We study in detail the behaviour of V (x, L), which we expect to obey a standard
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Figure 9. The fluctuations V (x, L) as a function of the fugacity x (the top-left panel). xc(L) − xc
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4/3.

finite-size scaling ansatz

V (x, L) ∼ L2/νṼ ((x − xc)L
1/ν), (14)

(which is equivalent to (2) of [2]) where Ṽ (y) is a scaling function. From this it follows
that the position and the height of the peak in V (x, L) scale as xc(L) − xc ∼ L−1/ν and
Vmax(L) ∼ L2/ν .

In table 3 we have listed the numerical values of the mean-length at xc and the position and
height of the maximum of the fluctuations. We analyse these data by forming the associated
generating functions, N(z) = ∑

L〈n(x, L)〉zL etc, and using differential approximants. Given
the expected asymptotic behaviour of these quantities the generating functions should have a
singularity at zc = 1 with critical exponents −1/ν −1 (average length at xc), 1/ν −1 (position
of the peak) and −2/ν−1 (height of the peak). In table 4 we list the results from an analysis of
the generating functions using second-order differential approximants. The estimates for the
exponents are not very accurate (which is not surprising given the short length of the series)
but are fully consistent with ν = 3/4.

Finally, in figure 9 we perform a more detailed analysis to confirm the conjectured
scaling form for V (x, L). In the top-left panel we have simply plotted V (x, L) as a function
of the fugacity x to confirm the single peak behaviour. In the top-right panel we have
plotted xc(L) and Vmax versus L in a log–log plot, thus confirming that these quantities
grow as a power-law with L (the straight lines, drawn as a guide to the eye, have slopes
−1/ν = −4/3 and 2/ν = 8/3, respectively). In the bottom panels we check numerically
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Table 3. The mean-length of walks crossing an L × L square at the critical fugacity x = xc , the
position, xc(L) − xc , and height, Vmax(L), of the peak in the fluctuations V (x, L).

L 〈n(xc, L)〉 xc(L) − xc Vmax(L)

1 2
2 4.123 082 7138 0.937 021 7352 2.535 898 3849
3 6.349 107 8353 0.555 468 7338 6.285 074 3202
4 8.651 936 5910 0.396 396 0508 12.567 128 9312
5 11.012 977 3423 0.301 671 4640 21.624 667 6036
6 13.418 756 1852 0.240 344 8999 33.750 732 8831
7 15.859 348 0600 0.197 967 3072 49.226 822 0069
8 18.327 354 5355 0.167 198 1710 68.329 430 9970
9 20.817 197 6528 0.143 980 1106 91.328 882 5240

10 23.324 624 3077 0.125 915 8112 118.488 718 5709
11 25.846 355 6412 0.111 509 1953 150.065 708 9122
12 28.379 836 9044 0.099 783 2765 186.310 146 0060
13 30.923 057 2826 0.090 075 3740 227.466 246 9752
14 33.474 418 7854 0.081 921 3689 273.772 578 8463
15 36.032 639 8605 0.074 987 2153 325.462 469 6518
16 38.596 683 8209 0.069 026 7737 382.764 390 1657
17 41.165 705 1788 0.063 854 9420 445.902 301 5941

Table 4. Estimates for zc and the critical exponents obtained from second-order differential
approximants to the generating functions in table 3. K is the degree of the inhomogeneous
polynomial of the differential approximant.

〈n(xc, L)〉 xc(L) − xc Vmax(L)

K zc −1/ν − 1 zc 1/ν − 1 zc −2/ν − 1

0 0.999 9823(13) −2.329 85(17) 1.000 17(11) 0.3147(96) 0.999 998(20) −3.662 0(21)
1 0.999 983(10) −2.329 9(12) 1.000 114(23) 0.3196(16) 0.999 9900(41) −3.661 34(34)
2 0.999 9818(79) −2.329 73(99) 1.000 124(15) 0.3185(16) 0.999 982(10) −3.660 6(10)
3 0.999 9789(88) −2.329 3(11) 1.000 13(10) 0.3183(81) 0.999 975(17) −3.659 8(18)
4 0.999 9773(76) −2.329 15(93) 1.000 084(45) 0.3215(47) 0.999 979(11) −3.660 3(11)
5 0.999 9786(70) −2.329 30(80) 1.000 136(75) 0.3171(61) 0.999 9850(69) −3.660 81(65)

the scaling ansatz for V (x, L). In the left panel we plot V (x, L)/L8/3 versus the scaling
variable (x − xc)L

4/3 obtaining a reasonable scaling collapse. A better idea of the quality
of the scaling collapse can be gauged from the plot in the bottom-right panel. Here we plot
the difference between consecutive scaling plots from the left panel. More precisely, we plot
D(x,L) = V (x, L)/L8/3 − V (x ′, L − 1)/(L − 1)8/3 versus (x − xc)L

4/3, where x ′ is chosen
so that the scaled variables coincide, e.g., (x − xc)L

4/3 = (x ′ − xc)(L − 1)4/3.

8. Walks crossing the square and hitting the centre

In [12] Knuth also considered the problem of self-avoiding walks crossing the square and
passing through the centre (L/2, L/2) of the grid (with L being even). Denote the number of
such walks by c(L). Then a straightforward variant of the method of proof used in section 4
can be applied to prove that

lim
L→∞

c(L)1/L2 = λ2.

Knuth used Monte Carlo simulations to estimate the fraction of paths hitting the centre point
and found for L = 10 that 81 ± 10 per cent of all paths do hit the centre. He then went
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Table 5. The total number of walks crossing an L × L square and passing through the centre
(L/2, L/2), c(L) and the ratio c(L)/C(L).

L c(L) c(L)/C(L)

2 10 0.833 333 . . .

4 7 056 0.828 947 . . .

6 462 755 440 0.803 701 . . .

8 2 593 165 016 903 538 0.793 842 . . .

10 1 243 982 213 040 307 428 318 660 0.792 972 . . .

12 51 166 088 445 891 978 924 432 033 203 830 714 0.792 927 . . .

14 180 349 587 397 776 823 066 172 713 933 745 722 978 533 730 900 0.792 920 . . .

16 54 508 896 286 415 931 462 305 055 600 895 616 388 822 171 335 171 594 099 162 334 0.792 909 . . .

18 1 413 040 380 714 086 952 244 299 343 879 218 154 884 335 669 707 058 802 937 825 791 571 640 010 167 156 0.792 901 . . .

on to say that ”perhaps nobody will ever know the true answer.” Naturally, we cannot let
Knuth’s challenge go unanswered. It is very simple to modify the transfer matrix algorithm
to ensure that all paths pass through a given vertex. We just make sure that when we do the
updating at the given vertex the input state ‘00’ (no occupied incoming edges) has only one
output state ‘12’, while the output ‘00’ (no outgoing occupied edges) is disallowed at this
vertex. We can thus answer Knuth’s query and state for all to know that for L = 10 a fraction
1243 982 213 040 307 428 318 660/1568 758 030 464 750 013 214 100 = 0.792 972 . . . of all
paths pass through the centre. In table 5 we have listed the number of paths passing through
the centre for L � 18.

The fact that C(L)/c(L) appears to be going to a constant implies that not only is
the asymptotically dominant behaviour of both C(L) and c(L) the same, but so must the
sub-dominant behaviour. We note the useful mnemonic that the ratio appears close to√

π/5 = 0.792 66 . . . , though we have no idea how to prove or disprove that this is the
correct value.

9. Hamiltonian walks

Hamiltonian walks can only exist on 2L×2L lattices. For lattices with an odd number of edges,
one site must be missed. A Hamiltonian walk is of length 4L(L+ 1) on a 2L×2L lattice. The
number of such walks grows as τ 4L2

, where we find τ ≈ 1.472 based on exact enumeration
up to 17 × 17 lattices. In [10] Jacobsen and Kondev gave a field-theoretical estimate of the
growth constant for a Hamiltonian SAW on the square lattice as 1.472 801 ± 0.000 01. These
were walks confined to a square geometry, but not restricted as to starting and endpoints as are
those we consider here. Nevertheless, it seems likely that we are estimating the same quantity,
so our results can be seen as providing support for the view that the field theory is estimating
precisely the same quantity as our enumerations. That is to say, this appears to be precisely
the same as the corresponding result for Hamiltonian walks on an L × L lattice, in the large L
limit. These estimates are about 20% less than λ, the growth constant for all paths. In [1] it is
proved that 21/3 � τ � 121/4. Numerically, this evaluates to 1.260 � τ � 1.861.

We can improve on these bounds as follows. We define cow-patch walks to be Hamiltonian
if every vertex of the square not belonging to the border of the square belongs to one of the
SAWs of the cow-patch. Then the upper bounds given above translate verbatim into upper
bounds for τ , while lower bounds are given by Hamiltonian traversing paths and equation (8).
In this way we find that 1.429 < τ < 1.530. As we have shown above that 1.6284 < λ, this
proves that τ < λ.
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Table 6. The number of Hamiltonian paths.

L HL

1 2
2 2
3 32
4 104
5 10 180
6 111 712
7 67 590 888
8 2 688 307 514
9 9 628 765 945 000

10 1 445 778 936 756 068
11 29 725 924 602 729 604 016
12 17 337 631 013 706 758 184 626
13 1 998 903 003 325 610 328 086 958 408
14 4 628 650 743 368 437 273 677 525 554 148
15 2 937 440 223 891 635 053 435 045 277 805 847 436
16 27 478 778 338 807 945 303 765 092 195 103 685 118 924
17 94 555 056 448 262 478 314 997 568 263 027 383 699 860 223 148

Table 7. The number of Hamiltonian cow-patch paths.

L HPL

2 6
3 81
4 2 420
5 158 487
6 22 668 546
7 7 067 228 903
8 4 796 951 277 784
9 7 083 189 530 689 311

10 22 740 544 515 287 098 346
11 158 673 902 903 632 923 216 807
12 2 405 521 769 596 577 026 409 223 804
13 79 215 226 453 280 152 797 069 512 845 071
14 5 665 275 864 000 731 097 175 367 200 188 234 758
15 879 791 999 732 650 875 090 633 720 304 683 597 787 867
16 296 640 712 696 590 626 976 673 730 832 416 228 749 213 171 388
17 217 134 088 450 048 497 810 206 709 994 144 694 071 029 172 119 163 041
18 345 011 492 148 033 546 292 595 301 223 727 273 934 239 259 467 419 472 922 686

The number of Hamiltonian paths HL for L even, and paths that visit all but one site, for
L odd, are given in table 6. The number of Hamiltonian cow-patch paths HPL for L even,
and cow-patch paths that visit all but one site, for L odd, are given in table 7. The number of
Hamiltonian transverse paths HTL for L even, and transverse paths that visit all but one site,
for L odd, are given in table 8.

E-mail or WWW retrieval of series

The series for the problems studied in this paper are available by request from I.Jensen@ms.
unimelb.edu.au or via the world wide web http://www.ms.unimelb.edu.au/∼iwan/ by following
the relevant links.
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Table 8. The number of Hamiltonian traversing paths.

L HTL

1 2
2 8
3 34
4 650
5 12 014
6 1 016 492
7 83 761 994
8 32 647 369 000
9 12 227 920 752 840

10 22 181 389 298 814 376
11 38 166 266 554 504 010 420
12 323 646 210 116 765 453 608 746
13 2 574 827 340 090 912 815 899 810 042
14 102 299 512 403 818 451 392 332 665 527 950
15 3 778 748 215 131 699 995 997 836 850 757 543 682
16 704 314 728 645 701 361 948 084 580 318 587 261 484 806
17 121 135 616 205 759 617 794 904 559 766 506 890 558 675 949 856
18 106 005 756 542 854 454 380 006 180 528 618 254 764 945 283 647 525 384
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